
An Efficient Key Management Scheme for               
Heterogeneous Sensor Networks 

 
S.Gandhi ,D.Indira 

Department of Computer Science and Engineering 
Gudlavalleru Engineering College 

Gudlavalleru—521356 
 

Abstract—Previous research on sensor network security 
mainlyconsiders homogeneous sensor networks, where all sensor 
nodes have the same capabilities. Research has shown that 
homogeneous ad hoc networks have poor performance and 
scalability.The many-to-one traffic pattern dominates in sensor 
networks,and hence a sensor may only communicate with a 
small portion of its neighbors. Key management is a 
fundamental security operation.Most existing key management 
schemes try to establish shared keys for all pairs of neighbor 
sensors, no matter whether these nodes communicate with each 
other or not, and this causes large overhead. In this paper, we 
adopt a Heterogeneous Sensor Network (HSN) model for better 
performance and security. We propose a novel routing-driven 
key management scheme, which only establishes shared keys for 
neighbor sensors that communicate with each other. We utilize 
Elliptic Curve Cryptography in the design of an efficient key 
management scheme for sensor nodes. The performance 
evaluation and security analysis show that our key management 
scheme can provide better security with significant reductions 
on communication overhead, storage space and energy 
consumption than other key management schemes. 
 

I. INTRODUCTION 
WIRELESS sensor networks have applications in many 
areas, such as military, homeland security, health care, 
environment, agriculture, manufacturing, and so on. In the 
past several years, sensor networks have been a very active 
research area. Most previous research efforts consider 
homogeneous sensor networks, where all sensor nodes have 
the same capabilities. However, a homogeneous ad hoc 
network suffers from poor fundamental limits and 
performance. Research has demonstrated its performance 
bottleneck both  theoretically [1], [2] and through simulation 
experiments and test bed measurements [3]. Several recent 
work (e.g., [4], [5],and [6]) studied Heterogeneous Sensor 
Networks (HSNs),where sensor nodes have different 
capabilities in terms of communication, computation, energy 
supply, storage space, reliability and other aspects .Security is 
critical to sensor networks deployed in hostile environments, 
such as military battlefield and security monitoring. A 
number of literatures have studied security issues in 
homogeneous sensor networks, e.g., [6], [7]. Key 
management is an essential cryptographic primitive upon 
which other security primitives are built. Due to resource 
constraints, achieving such key agreement in wireless sensor 
networks is non-trivial. In [6],For example, when is 
10,000, each sensor needs to pre-load more than 150 keys for 
a key-sharing probability of 0.9 [6]. If the key length is 256 
bits, then 150 keys require a storage space of 4,800 bytes. 

Such a storage requirement is too large for many sensor 
nodes. In this paper, we present an efficient key management 
scheme that only needs small storage space. The scheme 
achieves significant storage saving by utilizing 1) the fact that 
most sensor nodes only communicate with a small portion of 
their neighbors; 2)an efficient public-key cryptography. 
Below we briefly discuss the two issues. More details are 
given in Sections II and III. Most existing sensor key 
management schemes are designed to set up shared keys for 
all pairs of neighbor sensors, without considering the actual 
communication pattern. In many sensor networks, sensor 
nodes are densely deployed in the field.  
Definition  1. - neighbor:  
A neighbor sensor node is referred to as a communication 
neighbor (-neighbor) of sensor node if is in a route from 
to the sink. Based on the above observation, we propose a 
novel idea for efficient key management in sensor networks. 
A key management scheme only needs to set up shared keys 
for each sensor and its -neighbors, i.e., it does not need to set 
up shared keys for each pair of neighbor sensors. The recent 
implementation of 160-bit ECC on Atmel ATmega128, a 
CPU of 8Hz and 8 bits, shows that an ECC point 
multiplication takes less than one second [11], which 
demonstrates that the ECC public-key cryptography is 
feasible for sensor networks. Compared with symmetric key 
cryptography, public-key cryptography provides a more 
flexible and simple interface, requiring no key pre-
distribution, no pair-wise key sharing, and no complicated 
one-way keychain scheme.ECC can be combined with  Diffie 
-Hellman approach to provide key exchange scheme for two 
communication parties.ECC can also be utilized for 
generating digital signature, data encryption and decryption. 
The Elliptic Curve Digital Signature Algorithm (ECDSA) 
utilizes ECC to generate digital signature for authentication 
and other security purposes [12], [13]. Several approaches for 
encryption and decryption using ECC have been proposed 
[10], [12]. Please refer to references[10], [12], [13] for the 
details.In this paper, we present an efficient key management 
scheme for HSNs. The scheme utilizes the -neighbor 
concept and ECC public-key cryptography. Typical sensor 
nodes are unreliable devices and may fail overtime. Our key 
management scheme considers topology change caused by 
node failures. That is, the scheme set up pair wise keys for 
each sensor with more than one neighbor. The contributions 
of this paper are three folds. First, we observed the fact that a 
sensor only communicates with a small portion of its 
neighbors and utilized it to reduce the overhead of key 

 S. Gandhi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2343-2347

2343



management. Second, we designed an effective key 
management scheme for HSNs by taking advantage of 
powerful H-sensors. Third, we utilized a public key algorithm 
- ECC for efficient key establishment among sensor nodes. 
The rest of the paper is organized as follows. 
Section II describes the routing structure in HSNs. Section III 
presents the routing-driving key management scheme. 
Section IV gives the simulation results and security analysis.  
 

II. THE ROUTING STRUCTURE IN HSNS 

In this Section, we present an efficient key management 
scheme for HSNs which utilizes the special communication 
pattern in sensor networks and ECC. The scheme is referred 
to 
as ECC-based key management scheme. We consider an 
HSN consisting of two types of sensors: a small number of 
high-end sensors (H-sensors) and a large number of low-end 
sensors(L-sensors). Both H-sensors and L-sensors are 
powered by batteries and have limited energy supply. 
Clusters are formed in an HSN. For an HSN, it is natural to 
let powerful H-sensors serve as cluster heads and form 
clusters around them. First, we list the assumptions of HSNs 
below. 
1) Due to cost constraints, L-sensors are NOT equipped with 
tamper-resistant hardware. Assume that if an adversary 
compromises an L-sensor, she can extract all key material, 
data, and code stored on that node. 
2) H-sensors are equipped with tamper-resistant hardware. It 
is reasonable to assume that powerful H-sensors are equipped 
with the technology. In addition, the number of H-sensors in 
an HSN is small (e.g., 20 H-sensors and 1,000 L-sensors in 
an HSN). Hence, the total cost 
of tamper-resistant hardware in an HSN is low. 
3) Each L-sensor (and H-sensor) is static and aware of its 
own location. Sensor nodes can use a secure location service 
such as [14] to estimate their locations, and no GPS receiver 
is required at each node. 
4) Each L-sensor (and H-sensor) has a unique node ID. 
5) The sink is trusted. 
The notations used in the rest of the paper are listed below. 
1) and are L-sensors. 
2) H is an H-sensor. Next, we briefly describe a cluster 
formation scheme for HSNs. 

 
 
A. The Cluster Formation 
After sensor deployment, clusters are formed in an HSN. We 
have designed an efficient clustering scheme for HSNs in 

[15]. Because of the page limit, we will not describe the 
details of the clustering scheme here. For the simplicity of 
discussion, assume that each H-sensor can communicate 
directly with its neighbor H-sensors All H-sensors form a 
backbone in an HSN. After cluster formation, an HSN is 
divided into multiple clusters, where H sensors serve as the 
cluster heads. An illustration of the cluster formation is 
shown in Fig. 1, where the small squares are L sensors, large 
rectangular nodes are H-sensors, and the large square at the 
bottom-left corner is the sink. 
B. Routing in HSNs 
In an HSN, the sink, H-sensors and L-sensors form a 
hierarchical network architecture. Clusters are formed in the 
network and H-sensors serve as cluster heads. All H-sensors 
form a communication backbone in the network. Powerful H-
sensors have sufficient energy supply, long transmission 
range, high date rate, and thus provide many advantages for 
designing more efficient routing protocols. We have designed 
an efficient routing protocol for HSNs in [16]. Routing in an 
HSN consists of two phases: 1) Intra-cluster routing – each L-
sensor sends data to its cluster head via multi-hops of other 
L-sensors; and 2) Inter-cluster routing - a cluster head (an H-
sensor) aggregates data from multiple L-sensors and then  
sends the data to the sink via the H-sensor backbone. The 
routing structure in an HSN is illustrated in Fig. 1. We are  
interested in key establishment for L-sensors, so we briefly 
describe the intra-cluster routing scheme below. An intra-
cluster routing scheme determines how to route packets from 
an L-sensor to its cluster head. The basic idea is to let all L-
sensors (in a cluster) form a tree rooted at the cluster head H. 
It has been shown in [17] that: 
 (1) If complete data fusion is conducted at intermediate 
nodes,(i.e., two bit packets come in, and one -bit packet 
goes out after data fusion) then a minimum spanning tree 
(MST) consumes the least total energy in the cluster.  
(2) If there is no data fusion within the cluster, then a 
shortest-path tree (SPT) consumes the least total energy. 
 (3) For partial fusion, it is a NP complete problem of finding 
the tree that consumes the least total energy.  
 
III. THE ROUTING-DRIVEN KEY MANAGEMENT SCHEME 
 
Key setup for L-sensors can be achieved in either centralized 
or distributed way. First, we present the centralized scheme. 
 
A. Centralized Key Establishment 
We propose the following centralized ECC-based key 
management scheme. A server is used to generate pairs of 
ECC public and private keys, one pair for each L-sensor (and 
H sensor). 
The server selects an elliptic curve E over a large finite field 
and a point on that curve. Each L-sensor (denoted as ) 
is pre-loaded with its private key (denoted as = ). 
An H-sensor has large storage space and is pre-loaded with  
public keys of all L-sensors (such as = ). Each H 
sensor (denoted as H) also stores the association between 
every L-sensor and its private key. An alternative approach is 
to pre-load each L-sensor its public key and then let every L 

 S. Gandhi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2343-2347

2344



sensor sends the public key to H after deployment. However, 
this scheme introduces large communication overhead and 
furthermore security problems, since an adversary may 
modify the public key during its route to H. 
Given the protection from tamper-resistant hardware, the 
same ECC Public / private key pair can be used by all H-
sensors, which reduces the storage overhead of the key 
management scheme. Each H-sensor is pre-loaded with a pair 
of common ECC public key (denoted as = ) and 
private key (denoted as = ). The public key of H-
sensors – is also loaded in each L-sensor, and the key is 
used to authenticate broadcasts from H-sensors. The ECDSA 
algorithm [13] isused for authenticating broadcasts from H-
sensors. After selecting a cluster head H, each L-sensor 
sends to H a clear (un-encrypted) -message, 
which includes the L-sensor ID - , and ’ s location. Next, H 
generates shared-keys for each L-sensor and its -neighbors. 
For an L sensor and its -neighbor , H generates a new 
key . 
Recall that H is pre-loaded with the public keys of all L 
sensors. H encrypts by using ’s public key and an ECC 
encryption scheme [18], and then H  unicasts the message to 
. L-sensor decrypts the message and obtain the shared key 
 Between  itself and . After all L-sensors obtain the shared 
keys, t hey can communicate securely with their -neighbors. 
 
B. Distributed Key Establishment 
The key setup can also be done in a distributed way. In the 
distributed key establishment, each L-sensor is pre-loaded 
with a pair of ECC keys - a private key and a public key. 
When an L-sensor (denoted as ) sends its locations 
information to its cluster head H, computes a Message 
Authentication Code (MAC) over the message by using ’s 
private key, and the MAC is appended to message. When H 
receives the message, H can verify the MAC and then 
authenticate ’s identify, by using ’s public key. Then H 
generates a certificate (denotedas CA) for ’s public key by 
using H’s private key. After determining the routing tree 
structure in a cluster, the cluster head H disseminates the tree 
structure (i.e., parent child relationship) and the 
corresponding public key certificate to each L-sensor. The 
public key certificates are signed by H’s private key, and can 
be verified by every L-sensor, since each L-sensor is 
preloaded with H’s public key. A public key certificate 
proves the authenticity of a public key and further proves the 
identity of one L-sensor to another L-sensor. If two L-sensors 
are parent and child in the routing tree, then they are -
eighbors of each other, and they will set up a shared key by 
themselves. For each pair of -neighbors, the sensor with 
smaller node ID initiates the key establishment process. For 
example, suppose that L-sensor and are neighbors and 
has a smaller ID than . The process is presented below: 
 
1) Node sends its public key 

= to . 
2) Node sends its public key 

= to . 

3) Node generates the shared key by multiplying its private 
key with ’s public key – , i.e., = 


= ; similarly, generates the shared key 
- = 



= . 
After the above process, nodes and share a common key 
and they can start secure  communications. To reduce the 
computation overhead, symmetric encryption algorithms are 
used among L-sensors. Note that in the distributed key 
establishment scheme, the assumption of having tamper-
resistant hardware in H-sensors can be removed. 
 
C. Key Revocation 
When an L-sensor is compromised by an adversary, all the 
keys used by this L-sensor needs to be revoked. Assume that 
the node compromise is detected by some scheme and is 
reported to the cluster head H. A digital signature (denoted as 
) is calculated over the message by using the ECDSA 
algorithm [13] and H’s private key , and the is appended 
after the key list. The format of the message is: 
Node ID + . Upon receiving a message, an 
L-sensor checks whether it communicates with the 
compromised node. If so, the L  sensor revokes the keys 
shared between them. message, it can check the 
integrity of the message by verifying the digital signature. 
This prevents an adversary from sending a fake 
message. 
 

IV. PERFORMANCE EVALUATION 
 

In this Section, we present the performance evaluation results 
of the ECC-based key management scheme (referred to as the 
ECC scheme below). The key pre-distribution scheme 
proposed by E schenauer and Gligor [6] is used for 
comparison, and it is referred to as the E-G scheme. We 
compare the storage requirement and energy consumption in 
subsection A and B, respectively. The security analysis is 
presented in subsection C. 
 
A. Significant Storage Saving 
Assume that the number of H-sensors and L-sensors in an 
HSN is and , respectively. Typically we have . 
In the centralized ECC key management scheme, each 
Lsensor 
is pre-loaded with its private key and the public key of H-
sensors. Each H-sensor is pre-loaded with public keys of all 
L-sensors, plus a pair of private/public key for itself, and a 
key for newly deployed sensors. Thus, an H-sensor is 
pre-loaded with + 3 keys. The total number of pre-loaded 
keys is: 
� (+ 3)+2 � = (+ 2)+ 3(1) 

In the distributed ECC key management scheme, each 
Lsensor is pre-loaded with its public/private key. Each H-
sensor is pre-loaded with public/private key and key . 
Thus, the total number of pre-loaded keys is:  3+ 2(2) 

 S. Gandhi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2343-2347

2345



In the E-G scheme, each sensor is pre-loaded with 
keys.The total number of pre-loaded keys in a network 
with +sensors is: 
(+ ) (3) 
The value of depends on the key pool size and the 
probability of sharing at least one key between two sensors. 
When is 10,000, needs to be larger than 150 to achieve a 
key sharing probability of 0.9 [6]. Let’s use an example to 
compare the storage requirement of ECC key management 
scheme and the E-G scheme. Suppose that there are = 

1000 L-sensors and = 20 In a homogeneous sensor 
network with 1020 sensors, each sensor is pre-loaded with 
150 keys. The total number of preloadedkeys is 153,000, 
which is 7 times more than that in the centralized ECC 
scheme, and about 74 times of that in the distributed ECC 
scheme. The example shows that the ECC key management 
scheme requires much less total storage space than the E-G 
scheme. In Fig. 2, we plot the total storage requirements for 
different sizes of sensor networks and different numbers of 
pre-loaded keys in the E-G scheme. The -axis is - the 
number of pre-loaded keys in the E-G scheme. The -axis 
represents the total storage space required for pre-loaded keys 
(in the unit of key length). The top five dotted curves (with 
small circles) are the total required storage spaces under the 
E-G scheme, where = 1,000, 800, 600, 400, and 200 from 
top to bottom, respectively. The five solid lines at the bottom 
of Fig. 2 are thetotal required memory spaces under the 
centralized ECC key management scheme, for the five value 
of (1,000, 800, 600,400, and 200). Fig. 2 shows that the 
ECC key anagement scheme requires much less storage space 
for pre-loaded keys than the E-G scheme, for different 
network sizes and numbers of pre-loaded keys () tested. 
The more keys pre-loaded in a sensor under the E-G scheme, 
the larger the storage saving achieved by the ECC scheme. 

 
Fig. 2. Comparison of required storage space 

 
B. Total Energy Consumption 
We run simulations to compare the energy consumption of 
our ECC key management scheme and the E-G scheme. The 
simulations are conducted by using the QualNet simulator 
[19]. The default simulation testbed has 1 sink and 1000 L-
sensors randomly distributed in a 1000� 1000area. The 

underlying medium access control protocol is IEEE 802.11 
Distributed Coordination Function (DCF). For the ECC 

scheme, there are additional 20 H-sensors. For comparison, 
20 L-sensors are added for the E-G scheme. The transmission 
range of an L-sensor and an H-sensor is 60and 150, 
respectively. The average number of neighbors for an L-
sensor is 1000 � �� 602(1000� 1000) � 11. Each 

simulation run lasts for 600 seconds, and each result is 
averaged over ten random network topologies. The energy 
consumption parameters 

are set according to the MICA2 Mote datasheet [20]. The 
energy consumed to receive a packet is =32mW, and the 

transmitter energy consumption is =81mW. The idle 
power consumption is = 12. We compare the total 

energy consumption of using the centralized ECC key 
management scheme and the E-G scheme. The energy 

consumption reported here only includes the energy used to 
set up security keys, but does not include the energy for data 
communications. In the simulation, the number of L-sensors 

varies from 200 to 1000, with an increase of 200. The number 
of H-sensors under the ECC scheme is always 20. For the E-
G scheme, the key pool size is = 10,000, and the number of 

pre-loaded keys in each sensor is = 150, thus, the key-
sharing probability is about 90%. Under the ECC scheme, a 

sensor only establishes shared key with communication 
neighbors. Denote the number of communication neighbors 

as . We measure the energy consumption of the ECC 
scheme for different values of , including 2, 6 and 11, where 

11 means that a sensor sets up keys with every neighbor. 

. 
Fig. 3 shows that the ECC key management scheme 
consumes much less energy than the E-G scheme (including 
the case when = 11), and the ECC scheme achieves more 
energy saving for larger networks. We obtain similar results 
for the distributed ECC key management scheme.  
 
C. Security Analysis 
In this subsection, we analyze the resilience of our ECC key 
management scheme against node compromise attack. We 
want to find out the effect of L-sensors being compromised 
on the rest of the network. I.e., for any two L-sensors and 
which are not compromised, what is the probability that the 
adversary can decrypt the communications between and 
when L-sensors are compromised? In the ECC key 
management scheme, each L-sensor is preloaded with one 

 S. Gandhi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2343-2347

2346



unique private key. After key setup, each pair of 
communicating L-sensors has a different shared key.Thus, 
compromising L-sensors does not affect the security of 
communications among other L- sensors. In [7], Chan 
calculate the probability that two sensors have exactly j 
common keys in the E-G scheme is () =(pj)(p-j 2(m-
j))(2(m-j) (m-j)/(p m)2 where 
_2, where is the number of pre-loaded keys in each 

sensor. Chan give the probabilityof compromising a 
secure link under the E-G scheme as: 
 
() =�(1-(1-m/p)c)j p(j)/�p(j) 
 

In Fig. 4, we plot the probability that an adversary can 
decrypt the communications between two sensors and 
when L-sensors (other than and ) are compromised 
(referred to as compromising probability). In Fig. 4, the key 
pool size is 10,000, and the number of compromised 
sensors - varies from 10 to 200, with an increment of 10. 
For the E-G scheme, we calculate the probability for three 
different values of : 20, 30, and 50. Fig. 4 shows that the 
more keys pre-loaded in a sensor under the E-G scheme, the 
larger the compromising probability, that is, less resilient to 
node compromise attack. For the ECC scheme, the 
compromising probability is always zero, no matter how 
many sensors are compromised, since each L-sensor uses a 
distinctive public/private key pair. Thus, the ECC key 
management scheme is very resilient against node 
compromise attack. 
 

 
 
Fig. 4. The probability of an independent secure link being compromised. 

 

V. CONCLUSIONS 
 

In this paper, we presented an efficient key management 
scheme for heterogeneous sensor networks. The proposed key 
management scheme utilizes the fact that a sensor only 
communicates with a small portion of its neighbors and thus 
greatly reduces the communication and computation 
overheads of key setup. A public key algorithm – Elliptic 
Curve Cryptography (ECC) is used to further improve the 
key management scheme. The scheme only pre-loads a few 
keys on each L-sensor and thus significantly reduces sensor 
storage requirement. Our performance evaluation and 
security analysis showed that the routing-driven, ECC-based 
key management scheme can significantly reduce 
communication overhead, sensor storage requirement and 
energy consumption while achieving better security (e.g., 
stronger resilience against node compromise attack) than a 
popular key management scheme for sensor networks. 
Hile achieving better security (e.g., stronger resilience against 
node compromise attack) than a popular key management 
scheme for sensor networks. 
 

REFERENCES 
[1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE 

Trans. Inform. Theory, vol. IT-46, no. 2, pp. 388-404, Mar. 2000. 
[2] E. J. Duarte-Melo and M. Liu, “Data-gathering wireless sensor networks: 

organization and capacity,” Computer Networks (COMNET) Special 
Issue on Wireless Sensor Networks, vol. 43, no. 4, pp. 519  537, Nov. 
2003. 

[3] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with mobile 
backbones,” in Proc. IEEE ICC 2002, New York, NY, Apr. 2002. 

[4] L. Girod, T. Stathopoulos, N. Ramanathan, et al., “A system for 
simulation, emulation, and deployment of heterogeneous sensor 
networks,” in Proc. ACM SenSys 2004. 

[5] M. Yarvis, N. Kushalnagar, H. Singh, et al., “Exploiting heterogeneity in 
sensor networks,” in Proc. IEEE INFOCOM 2005, Miami, FL, Mar. 
2005. 

[6] L. Eschenauer and V. D. Gligor, “A key management scheme for 
distributed sensor networks,” in Proc. 9th ACM Conference on 
Computerand Communication Security, pp. 41-47, Nov. 2002. 

[7] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes 
for sensor networks,” in Proc. 2003 IEEE Symposium on Security and 
Privacy, May 2003, pp. 197-213. 

[8] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Mobile networking for smart 
dust,” in Proc. ACM/IEEE Intl. Conf. on Mobile Computing and 
Networking (MobiCom), Seattle, WA, August 1999, pp. 271-278. 

[9] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a 
neighborhood abstraction for sensor networks,” in Proc. ACM 
International Conference on Mobile Systems, Applications, and 
Services (MobiSys ’04), Boston, MA, June, 2004. 

[10] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of 
Computation, vol. 48, pp. 203-209, 1987. 

 
 

 

 S. Gandhi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2343-2347

2347




